Variation in mannose-capped terminal arabinan motifs of lipoarabinomannans from clinical isolates of Mycobacterium tuberculosis and Mycobacterium avium complex.
نویسندگان
چکیده
The unique terminal arabinan motifs of mycobacterial lipoarabinomannan (LAM), which are mannose-capped to different extents, probably constitute the single most important structural entity engaged in receptor binding and subsequent immunopathogenesis. We have developed a concerted approach of endoarabinanase digestion coupled with chromatography and mass spectrometry analysis to rapidly identify and quantitatively map the complement of such terminal units among the clinical isolates of different virulence and drug resistance profiles. In comparison with LAM from laboratory strains of Mycobacterium tuberculosis, an ethambutol (Emb) resistant clinical isolate was shown to have a significantly higher proportion of nonmannose capped arabinan termini. More drastically, the mannose capping was completely inhibited when an Emb-susceptible strain was grown in the presence of subminimal inhibitory concentration of Emb. Both cases resulted in an increase of arabinose to mannose ratio in the overall glycosyl composition of LAM. Emb, therefore, not only could affect the complete elaboration of the arabinan as found previously for LAM from Mycobacterium smegmatis resistant mutant but also could inhibit the extent of mannose capping and hence its associated biological functions in M. tuberculosis. Unexpectedly, an intrinsically Emb-resistant Mycobacterium avium isolate of smooth transparent colony morphology was found to have most of its arabinan termini capped with a single mannose residue instead of the more common dimannoside as established for LAM from M. tuberculosis. This is the first report on the LAM structure from M. avium complex, an increasingly important opportunistic infectious agent afflicting AIDS patients.
منابع مشابه
Truncated structural variants of lipoarabinomannan in Mycobacterium leprae and an ethambutol-resistant strain of Mycobacterium tuberculosis.
Current knowledge on the structure of lipoarabinomannan (LAM) has resulted primarily from detailed studies on a few selected laboratory strains of Mycobacterium tuberculosis, Mycobacterium bovis BCG, and Mycobacterium smegmatis. Our previous work was the first to report on the salient structural features of M. tuberculosis clinical isolates and demonstrated significant structural variations. A ...
متن کاملIdentification of Mycobacterium Tuberculosis Complex, Using Molecular Methods
Abstract Background and Objective: A high level of homogeneity observed within all bacteria in the Mycobacterium tuberculosis complex makes a property that seriously challenges traditional biochemical-based identification methods of these pathogens in the laboratory. The work presented here was conducted to characterize Mycobacterium tuberculosis complex isolates in Golestan, Northern Iran. ...
متن کاملCharacterization of Clinical and Environmental Mycobacterium avium Spp. Isolates and Their Interaction with Human Macrophages
Members of the Mycobacterium avium complex (MAC) are naturally occurring bacteria in the environment. A link has been suggested between M. avium strains in drinking water and clinical isolates from infected individuals. There is a need to develop new screening methodologies that can identify specific virulence properties of M. avium isolates found in water that predict a level of risk to expose...
متن کاملIdentification of Non-Tuberculosis Mycobacteria by Line Probe Assay and Determination of Drug Resistance Patterns of Isolates in Iranian Patients
The potentially pathogenic Non-Tuberculosis Mycobacteria (NTM) are emerging nowadays which result in pulmonary and non-pulmonary infections in human. This group of bacteria consists of at least 200 different species. While the pulmonary disease is the most common form of NTM infections, NTM can cause diffused infections as well as extrapulmonary infections in every organ, such as bone marrow, s...
متن کاملIdentification of a novel mannose-capped lipoarabinomannan from Amycolatopsis sulphurea.
The genus Amycolatopsis is a member of the phylogenetic group nocardioform actinomycetes, which also includes the genus Mycobacterium. Members of this group have a characteristic cell envelope structure, dominated by various complex lipids and polysaccharides. Amongst these, lipoglycans are of particular interest since mycobacterial lipoarabinomannans are important immunomodulatory molecules. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 6 شماره
صفحات -
تاریخ انتشار 2001